Inferring Viral Capsid Self-Assembly Pathway from Bulk Experiment Measurement via Parameter Fitting Methods

نویسندگان

  • Lu Xie
  • Nikolaos Sahinidis
چکیده

Self-assembly is a common phenomenon in the macro-molecular environment inside the cell and is critical for many cellular functions. Viral capsid assembly has been studied as a key model for self-assembly systems by researchers from different fields. There nonetheless remains a substaintial gap between experimental observations and current models, as the direct measurement of the assembly dynamics is currently intractible. Simulation-based methods can help bridge the gap, but the validity of such methods relies on the accuracy of a variety of physical parameters needed to instantiate the models, which also currently cannot be aquired by direct measurement. The work of this thesis is focused on developing a parameter-learning framework that can infer kinetic parameters of viral assembly models by fitting the models to indirect bulk experimental measurements. The underlying rationale is based on the assumption that the set of parameters that minimizes the difference between simulated and experimental results would be the most plausible candidate. The framework extends existing stochastic self-assembly simulation methods, viral capsid models, and a prior heuristic optimization method to a flexible architecture that is adaptive to multiple data sources and alternative optimization methods. The thesis specifically explores prospects for greater efficiency and accuracy through the use of more advanced algorithms or data sources for simulation-based model fitting. The framework has been tested on three in vitro viral assembly systems: human papillomavirus (HPV), heptatitis B virus (HBV) and cowpea chlorotic mottle virus (CCMV). The best fitting results from static light scattering (SLS) experiments suggest distinct in vitro assembly pathways for the three icosahedral viruses. Simulation experiments introducing synthetic non-covalent mass spectrometry (NCMS) data suggest that richer data sources can lead to substantial improve-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling HIV-1 viral capsid nucleation by dynamical systems.

There are two stages generally recognized in the viral capsid assembly: nucleation and elongation. This paper focuses on the nucleation stage and develops mathematical models for HIV-1 viral capsid nucleation based on six-species dynamical systems. The Particle Swarm Optimization (PSO) algorithm is used for parameter fitting to estimate the association and dissociation rates from biological exp...

متن کامل

Surveying capsid assembly pathways through simulation-based data fitting.

Virus capsid assembly has attracted considerable interest from the biophysical modeling community as a model system for complicated self-assembly processes. Simulation methods have proven valuable for characterizing the space of possible kinetics and mechanisms of capsid assembly, but they have so far been able to say little about the assembly kinetics or pathways of any specific virus. It is n...

متن کامل

Self-assembly of nanocomponents into composite structures: derivation and simulation of Langevin equations.

The kinetics of the self-assembly of nanocomponents into a virus, nanocapsule, or other composite structure is analyzed via a multiscale approach. The objective is to achieve predictability and to preserve key atomic-scale features that underlie the formation and stability of the composite structures. We start with an all-atom description, the Liouville equation, and the order parameters charac...

متن کامل

Host-rabies virus protein-protein interactions as druggable antiviral targets.

We present an unconventional approach to antiviral drug discovery, which is used to identify potent small molecules against rabies virus. First, we conceptualized viral capsid assembly as occurring via a host-catalyzed biochemical pathway, in contrast to the classical view of capsid formation by self-assembly. This suggested opportunities for antiviral intervention by targeting previously unapp...

متن کامل

Pathway complexity of model virus capsid assembly systems

As computational and mathematical studies become increasingly central to studies of complicated reaction systems, it will become ever more important to identify the assumptions our models must make and determine when those assumptions are valid. Here, we examine that question with respect to viral capsid assembly by studying the ‘pathway complexity’ of model capsid assembly systems, which we in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015